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J. Phys. A: Math. Gen. 16 (1983) 3355-3360. Printed in Great Britain 

Canonical general relativity: the primary constraint algebra 

J M Charap and J E Nelson 
Department of Physics, Queen Mary College, Mile End Road, London E l  4NS, England 

Received 21 February 1983 

Abstract. This is the second paper in a series discussing the canonical treatment of general 
relativity in vierbein formulation. We derive the primary constraints, and find that they 
satisfy an algebra the same as that of the generators of local Poincare transformations, 
namely the Poincart algebra. 

1. Introduction 

This paper is the second in a series in which we discuss the canonical treatment of 
general relativity in a vierbein basis. In the first paper (Charap and Nelson 1983) we 
derived the most general gravitational action that is free of second derivatives and, 
on variation, gives Einstein’s equations. This action also does not require any addi- 
tional boundary terms (see e.g. Gibbons and Hawking 1977, York 1972). In this 
paper we continue our investigation of the purely vierbein action (i.e. one that cannot 
be written in terms of metric variables) to determine the primary constraints and their 
algebra. We again consider pure gravity only, i.e. with no matter couplings. For 
non-derivative i.e. boson couplings, the results are unchanged. For fermion couplings 
there would be an extra contribution to the gravitational vierbein momenta from the 
spin coupling term in the action (see e.g. Nelson and Teitelboim 1978) but we expect 
the analysis to proceed along similar lines. 

In  9: 2 we discuss the action that we use and the effect of the arbitrary foliation of 
space-time by a succession of three-dimensional hypersurfaces using proper time as 
our time variable. In 9: 3 we use this action to derive momenta and ten primary 
constraints, and their resulting algebra. 

Our notation, conventions and signature ( +  - - - )  are the same as in Charap and 
Nelson (1983). 

2. The vierbein action 

Our starting point is the familiar Hilbert-Einstein expression for the action integral, 
namely 

where R ( g )  is the curvature scalar, 4g is the determinant of the metric tensor g,,, 
and M the space-time manifold. To this action should be added a surface integral 
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over the boundary 8M. An integration by parts removes the second derivatives of 
the vierbein fields La, from 

R = R ~ ~ , J , ~ ~ L ~ ~  
with 

R a b p v  = B v a b , &  - B p a b , v  f BfiLaCBvcb - B v a C B W c b  

and 

B F a b  = $ L b a L a Y [ L C . ( L c a , ,  - L c P , - )  - L c a ( L c v , H  - L C + , ” )  + L c , ( L C a , ,  - L C Y . ~ ) ] .  (2.1) 

The result is to give 

J - ~ ~ B ~ ~ ~ B ; ~ ( L ~ ~ L ~ ~  - LauLba)  d4x 
I =  I, 
7 (where by J- g we now mean the determinant of La,, considered as a 4 x 4 matrix), 

or using (2.1) 

with 
G a b c d e f  =,,ab(,,Ce,,df-,,, de ,, c f  ) + 2 , , a c ( , , d e , , b f - , , d f , , b e ) - 2 , , a d ( , , c e , , b f - , ,  c f  q be ) 

+ ,, bc (,, dfV ae - ,, de,, 0’) - ,, bd (,, cf,, ae - ,, ce,, “f). (2.4) 
abcdef This numerical quantity G possesses certain symmetries, namely 

Gabcdef = ~ a b c d [ e f ]  = ~ a b [ c d ] e f  - - ~ b a e f c d  

We will also make use of two important properties: 
G a b c ( d l e l f l  = G ( a l b / c ) ( d i e / f )  - - G a ( b / C d / e ) f  

and 
~ a b c [ d i e l f ]  = ~ [ a b c ] [ d e f l  - abch de( 

- E  E h 

where 
1 

A ( a b j = $ ( A a b  + A h a ) ,  A [ a b I = d A a b  - A h a ) .  

We have argued elsewhere (Charap and Nelson 1983) that when I is written in this 
form ((2.2) or ( 2 . 3 ) )  there are no surface terms required. We assume that the manifold 
M is foliated by a succession of three-dimensional hypersurfaces I;, the normals to 
which we will write as U ,  with U’ = +1 for space-like I;, and U’ = -1 for time-like I;. 
The surfaces I; define at every point of M a proper time one-form d r  dual to the 
normal U. We may write 

d r  = U ,  dx’” 

and it is with respect to this proper time variable 7 that we will develop the canonical 
formulation, for space-like hyperspaces, i.e. U *  = +l. For any fieldf over M we define 

f = af/ar = f,,uLL 

f.” = U”f + (8: - U LIUu)f,a 

and then 
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shows how the gradient off  may be separated into components normal and tangential 
to C, this tangential component being 

f,; = (6; - u”u,)f,,. 

La,,” = U&, -k La,,; 

In particular we have 

so that the action ( ( 2 . 2 )  or (2 .3) )  has the form 

We see that this action is expressed as a functional of the vierbeins La,, their tangential 
derivatives La,,;, the one-form field U, and the vierbein velocities La,, Our dynamical 
variables will therefore be the sixteen fields La,, and their conjugate momenta. 

3. Algebra of primary constraints 

The four-dimensional volume element 4- g d x may be written as dZ d7 where dC 
is the volume eleme_nt of the surface 2 If y is the metric in X induced by the metric 
g in M ,  then dC = Jyd3x.  Thus if 

7 4  

I = l P d r  

then the Lagrangian 2 is given by 

From this Lagrangian ( 3 . 1 )  it follows immediately that conjugate to La, is the 
momentum three-density 

(3 .2)  abcdef  . I T a w  = C%!/6Law = Jy(U,LbA -kLb~,a;)LCwUdLeALPG 

We observe that, from this definition, there are tent primary constraints relating the 
7 ~ ~ ~ ’ s  and the La,’s. They consist of the six$ generators of local vierbein rotations, 
defined by 

( 3 . 3 a )  J a b  = LayThY -LbyITau - 2 J v E  aCbhE defhLcA,&LeALPUd == 0 

f These ten primary constraints reduce the numbers of independent vierbein fields La, from sixteen to six, 
corresponding exactly to the six g,,’s of the ADM analysis (Arnowitt et a/  1962). These six degrees of 
freedom will later be reduced to the two real degrees of freedom of the gravitational field, by the 
implementation of four secondary constraints corresponding to the four generators of general coordinate 
transformations. 
i One checks that these six J4h ( 3 . 3 ~  j do indeed generate local rotations of the vierbein field by computing 
the bracket 

[:En* (x ) P ( X ) ,  LC,(X’)] = E ‘ ,Laws 3(x - x’ j  

[:Eob (x rb  (x ), 7rru (x ’ j l  f E c,7r0”s3(x - x’). 

where E , ~ ( x )  is an arbitrary local parameter. However, one also checks that 
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and the four 

T "  = 7rayu, 0. (3.36) 

There are no further primary constraints. These primary constraints are to be added 
to the canonical Hamiltonian with arbitrary Lagrange multipliers to give the total 
Hamiltonian which is the generator of time evolution of the system. 

Our next step is to use the canonical Poisson bracket relations between the 
dynamical field variables La, and their conjugate momentum densities rap (3.2) to 
determine the algebra of primary constraints. These Poisson brackets are of course 
between variables defined at points lying on the same surface Z. If 4 ( x )  is a field and 
x ( x ' )  its conjugate field momentum, with x and x '  both on C ,  then 

[ 4 ( x ) ,  7 r ( x ' ) ]  = 6'3 ' (x  - x ' )  

where S i 3 ' ( x  - x ' )  is the distribution which satisfies 

/ x f ( ~ ' ) 8 ' 3 ) ( ~  - x ' )  d 3 x ' = f ( x )  

for any test function f. Thus the only non-vanishing canonical Poisson brackets are 

Note that in (3.4) the derivative is along a direction indexed by i, i.e. tangential to 
C, so that the distribution on the right-hand side is well defined, and 

P i ( X  - x ' )  = ( a / a x i ) s i 3 ' ( x  - x ' )  = - ( a / a x ' i ) 6 ' 3 ' ( x  - x ' ) .  

It is of course a direct consequence of (3.36) that 

[ T " ( x ) ,  T b ( x ' ) ]  = 0. (3.5) 

The derivations of the other two brackets are less straightforward. The simpler one is 

[ T ' ( x ) ,  J a b ( x ' ) ]  = [ T ' ( x  1, L a b ( x ' ) ]  + [ T ' ( x  ), Sab  ( x ' ) ]  

where 
j a b  = L a b  + s a b  

with 
Lab = La,.rrb" -Lby7rau, Sab = - 2 J y ~ ~ ~ ~ h ~ ~ ~ ~ ~ L ~ * , s L ~ L p u d  

or, more conveniently, 
S"b = 4 ( J y p " ' u b 1 ) , a .  

We find that 

[T ' (x ) ,  L a b ( ~ ' ) ] = ( T a 6 b C  - T b 6 a C ) 6 ( 3 ) ( ~  - x ' )  

and 

[ T C ( x ) , S a b ( x ' ) 1 = O  (3.6) 
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[ T C ( x ) , J Q b ( x ' ) ] =  (T"Sb' - T b s n c ) S ( 3 ) ( X  -x ' ) *  

~ ( u ,  Jy ) /  Jy = u$(J%)/ J q  

SUJSL,, = 0 

f ( x  ' ) @ / a x  ' 3 S ( 3 ) ( x  - x ') = - f , & s ' 3 ' ( X  - x ' ) .  

In  deriving (3.6) we have used the relations 

with 

and the identity 

(3.7) 

(3.8) 

(3.9) 

This identity is valid when the distributions involved act on test functions and are 
integrated, i.e. 

I f ( x ' ) ( " a x ' ' ) S ( " ( x  - x ' )  d3x' = - a f ( x ) / a x ' .  

The derivation of the bracket [ J Q b ( x ) ,  J " ' b ' ( ~ ' ) ]  proceeds along similar lines, using (3.8) 
and (3.9). The result is 

[ J ~ b ( X ) ,  J a ' b ' ( X r ) ]  = ( 7 7 a b ' J a ' b  - 7 7 b a ' J a b ' + , , b b ' J a a ' -  77aQ'Jb 'b )S3(X  - x ' ) .  (3.10) 

4. Conclusions 

The equations ( 3 . 3 ,  (3.7) and 3.10) comprise the primary constraint algebra of general 
relativity in the vierbein basis. The primary constraints (3.3a),  (3.36) satisfy the same 
algebra as the generators of local PoincarC transformations, i.e. the PoincarC algebra. 
However, these primary constraints and their algebra should be viewed with caution, 
because they cannot necessarily be identified with the PoincarC generators, as can be 
seen by computing the brackets 

[iE&Jnb, L c s ] ,  [$&&Jab, rcy] ,  [-EaPal L',I, [ tap",  r c y I 7  

for arbitrary parameters &ab and ta. 
These primary constraints (3 .3a) ,  (3 .36)  are to be added to the canonical Hamil- 

tonian with arbitrary multipliers to give the total Hamiltonian H. The canonical 
Hamiltonian is defined as 

H,,, = J ( rawLa ,  -3) d3x 
x 

and can be computed as a functional of La, and rQw only, by elimination of velocities 
in favour of momenta, i.e. although there are only twelve independent momenta 7ra@ 
because of (3 .36) ,  and sixteen velocities L,,, their relationship (3.2) can indeed be 
inverted. 

The total Hamiltonian H then obtained is used to compute secondary constraints, 
i.e. time derivatives of primary constraints by 

P = [F, HI 

for functionals F of the canonical variables La,, raw. 
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Indeed, the four generators of general coordinate transformations appear as 
secondary constraints. The derivation of the total Hamiltonian and the secondary 
constraints will be given in the next paper of this series. 
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